Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation

نویسندگان

  • Guy Barles
  • Philippe Laurençot
  • Christian Stinner
چکیده

Convergence to a single steady state is shown for non-negative and radially symmetric solutions to a diffusive Hamilton-Jacobi equation with homogeneous Dirichlet boundary conditions, the diffusion being the p-Laplacian operator, p ≥ 2, and the source term a power of the norm of the gradient of u. As a first step, the radially symmetric and non-increasing stationary solutions are characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence to Steady States for a One-dimensional Viscous Hamilton-jacobi Equation with Dirichlet Boundary Conditions

The convergence to steady states of non-negative solutions u to the one-dimensional viscous Hamilton-Jacobi equation ∂tu − ∂2 xu = |∂xu|, (t, x) ∈ (0,∞)× (−1, 1) with homogeneous Dirichlet boundary conditions is investigated. For that purpose, a Liapunov functional is constructed by the approach of Zelenyak (1968). Instantaneous extinction of ∂xu on a subinterval of (−1, 1) is also shown for su...

متن کامل

The fibering map approach to a quasilinear degenerate p(x)-Laplacian equation

‎By considering a degenerate $p(x)-$Laplacian equation‎, ‎a generalized compact embedding in weighted variable‎ ‎exponent Sobolev space is presented‎. ‎Multiplicity of positive solutions are discussed by applying fibering map approach for the‎ ‎corresponding Nehari manifold‎. 

متن کامل

Large time behavior for some nonlinear degenerate parabolic equations

We study the asymptotic behavior of Lipschitz continuous solutions of nonlinear degenerate parabolic equations in the periodic setting. Our results apply to a large class of Hamilton-Jacobi-Bellman equations. Defining Σ as the set where the diffusion vanishes, i.e., where the equation is totally degenerate, we obtain the convergence when the equation is uniformly parabolic outside Σ and, on Σ, ...

متن کامل

Continuous Dependence Estimates for Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Equations

Using the maximum principle for semicontinuous functions (Differential Integral Equations 3 (1990), 1001–1014; Bull. Amer. Math. Soc. (N.S) 27 (1992), 1–67), we establish a general ‘‘continuous dependence on the nonlinearities’’ estimate for viscosity solutions of fully nonlinear degenerate parabolic equations with timeand space-dependent nonlinearities. Our result generalizes a result by Souga...

متن کامل

A Transformation Method for Solving the Hamilton{--}jacobi{--}bellman Equation for a Constrained Dynamic Stochastic Optimal Allocation Problem

We propose and analyse a method based on the Riccati transformation for solving the evolutionary Hamilton–Jacobi–Bellman equation arising from the dynamic stochastic optimal allocation problem. We show how the fully nonlinear Hamilton–Jacobi– Bellman equation can be transformed into a quasilinear parabolic equation whose diffusion function is obtained as the value function of a certain parametr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2010